Selasa, 31 Oktober 2017

Hukum Kemagnetan

HUKUM KEMAGNETAN

a. Gaya LorentzGaya Lorentz adalah gaya yang dialami sebuah penghantar yang dialiri arus listrik dalam 
suatu medan magnetik yang sangat kuat. Arah gaya Lorentz (F) selalu tegak lurus terhadap kuat arus (I) dan medan magnetik (B). Arah arus listrik (I) ditunjukkan oleh ibu jari, arah medan magnetik (B) ditunjukkan oleh jari telunjuk, dan gaya lorentz ditunjukkan oleh jari tengah. Besar gaya lorentz bergantung pada besar medan magnetik, besar arus listrik yang mengalir, panjang kawat penghantar, dan sudut yang terbentuk antara arus listrik dan medan magnetik. Secara matematis gaya Lorentz didefinisikan dengan persamaan sebagai berikut.
F = B × I × l × sin θ ......... (7.1)Keterangan: F = gaya Lorentz (Newton) B = medan magnetik (tesla) I = kuat arus listrik (ampere) l = panjang kawat penghantar (meter) θ = sudut antara arah arus listrik dan arah medan magnetik
Bila penghantar berarus di letakkan di dalam medan magnet , maka pada penghantar akan timbul gayaJadi gaya lorentz adalah gaya yang dialami kawat berarus listrik di dalam medan magnetBila pengamatan dilakukan dengan benar maka akan diperoleh :
(a) Makin besar arus listrik yang mengalir, makin besar pula gaya yang bekerja dan makin cepat batang penghantar bergulir.(b) Bila polaritas sumbu dirubah, maka penghantar akan bergerak dalam arah yang berlawanan dengan gerak sebelumnya.perhatikan gambar di bawah ini


b. Bunyi Hukum Faraday Hukum Faraday adalah Hukum dasar Elektromagnetisme yang menjelaskan bagaimana arus listrik menghasilkan medan magnet dan sebaliknya bagaimana medan magnet dapat menghasilkan arus listrik pada sebuah konduktor. Bunyi Hukum FaradayBerdasarkan percobaan yang dilakukannya tersebut, Michael Faraday menyimpulkannya dengan dua pernyataan seperti berikut ini yang juga sering disebut dengan Hukum Induksi Elektromagnetik Faraday 1 dan Hukum Induksi Elektromagnetik Faraday 2.Hukum Faraday 1Setiap perubahan medan magnet pada kumparan akan menyebabkan gaya gerak listrik (GGL) yang diinduksi oleh kumparan tersebut.Hukum Faraday 2Tegangan GGL induksi di dalam rangkaian tertutup adalah sebanding dengan kecepatan perubahan fluks terhadap waktu.
c. Hukum Lenz
Hukum Lenz merupakan hukum fisika yang memebrikan pernyataan tentang GGL (Gaya Gerak Listrik) Induksi. Hukum lenz memberikan penjelasan tentang arah arus induksiyang terjadi karena terjadinya GGL Induksi tersebut. Hukum Lenz ditemukan oleh ilmuwan fisika Friederich Lenz pada tahun 1834.bunyi hukum lenz :“Jika ggl induksi timbul pada suatu rangkaian, maka arah arus induksi yang dihasilkan sedemikian rupa sehingga menimbulkan medan magnetik induksi yang menentang perubahan medan magnetik (arus induksi berusaha mempertahankan fluks magnetik totalnya konstan).d.    Hukum NewtonDua benda salaing tarik menarik dengan suatu gaya yang sebanding-selaras dengan massa-massa dari kedua benda tersebut dan sebanding-balik dengan kuadrat dari jarak antara kedua benda itu.
Pemanfaatan Sifat Kemagnetan1. Prinsip Elektromagnet dalam Bel Listrik
Bel listrik terdiri atas beberapa bagian, yaitu sebagai berikut.
§  Besi berbentuk huruf U yang dililit kawat berfungsi sebagai magnet ketika diberi arus listrik.
§  Interuptor yang berfungsi sebagai pemutus arus.
§  Jangkar besi lunak yang dihubungkan dengan pegas baja.
§  Besi yang berfungsi sebagai bel.
§  Saklar tekan.
§  Baterai sebagai sumber tegangan.
Ketika saklar ditekan, arus listrik dari baterai mengalir melalui interuptor lalu menuju pegas baja dan akhirnya sampai di kumparan. Ketika kumparan dialiri arus listrik, kumparan tersebut menjadi magnet (elektromagnet) dan menarik jangkar besi lunak sehingga jangkar tersebut memukul bel dan menghasilkan bunyi. Sesaat setelah jangkar besi lunak ditarik oleh elektromagnet, arus listrik yang mengalir melalui interuptor terputus. Terhentinya arus listrik yang mengalir menuju kumparan menyebabkan kumparan kehilangan sifat kemagnetannya sehingga pegas baja menarik jangkar besi lunak pada keadaan semula. Setelah kembali ke kedudukan semula, interuptor terhubung kembali dengan arus listrik dari baterai sehingga kumparan menjadi magnet dan proses yang sama akan terulang kembali. Proses ini terjadi secara berulang-ulang sehingga bel terus menghasilkan bunyi sampai saklar kembali ditekan untuk memutuskan arus dari baterai.2. Prinsip Elektromagnet dalam RelaiRelai adalah alat elektronika yang dapat menghubungkan atau memutuskan arus listrik yang 
besar dengan memanfaatkan arus listrik yang kecil. Relai merupakan saklar yang bekerja dengan menggunakan prinsip elektromagnet.Ketika ada arus lemah yang mengalir melalui kumparan, inti besi lunak akan menjadi magnet. Setelah menjadi magnet, inti besi tersebut menarik jangkar besi lunak sehingga kontak saklar akan terhubung dan arus listrik kuat dapat mengalir. Kontak saklar akan terputus jika arus lemah yang masuk melalui kumparan diputuskan.Pada relai terdapat dua buah rangkaian yang terpisah. Rangkaian pertama adalah rangkaian yang menghubungkan arus lemah dengan elektromagnet pada relai. Rangkaian kedua adalah rangkaian yang memanfaatkan kontak saklar pada relai untuk memutuskan atau menghubungkan arus listrik kuat yang terhubung dengan alat listrik lainnya, seperti motor listrik atau lampu3. Prinsip Elektromagnet dalam Telepon
Telepon terdiri atas dua bagian utama, yaitu pesawat pengirim dan pesawat penerima. Telepon bekerja dengan cara mengubah gelombang suara menjadi getaran-getaran listrik. Ketika kita berbicara pada pesawat pengirim melalui mikrofon, tekanan suara kita menekan diafragma aluminium sehingga serbuk-serbuk karbon tertekan. Akibatnya, hambatan serbuk karbon berubah-ubah sesuai dengan tekanan suaramu.
Perubahan hambatan ini menyebabkan besarnya arus yang mengalir melalui rangkaian ikut berubah mengikuti perubahan tekanan suara. Perubahan besar arus yang mengalir tersebut diubah menjadi sinyal yang akan dikirimkan ke pesawat penerima. Pada pesawat penerima, sinyal listrik diubah kembali menjadi tekanan-tekanan suara. Akibatnya, diafragma besi yang ada dalam pesawat penerima terdorong dan menghasilkan tekanan suara yang sama dengan tekanan suara yang dikirimkan mikrofon.

Gejala Kemagnetan

GEJALA KEMAGNETAN
Pada beberapa abad yang lalu, kira-kira 600 SM, bangsa Yunani telah menemukan batuan di daerah Magnesia yang dapat menarik potongan besi dan baja. Batu inilah yang saat ini dikenal dengan nama magnet. Kemagnetan dapat diartikan sebagai tarikan sebuah magnet pada bahan-bahan magnetik. Benda magnetik adalah benda yang dapat ditarik oleh magnet, seperti peniti, penjepit kertas, jarum, dan paku payung. Benda magnetik biasanya terbuat dari besi, baja, kobalt, dan nikel. Benda-benda yang tidak dapat ditarik magnet dinamakan benda nonmagnetik atau benda bukan magnetik seperti penghapus, sendok, kertas, pensil, pulpen, dan penggaris. Benda nonmagnetik biasanya terbuat dari tembaga, aluminium, plastik, karet, dan kayu.
PENGERTIAN         
-Mengenal Magnet
Magnet atau magnit adalah suatu obyek yang dapat menimbulkan gejala gaya. baik gaya tari maupun g aya tolak terhadap jenis logam tertentu), besi, baja, seng dll.. Istilah Magnet berasal dari bahasa Yunani magnítis líthos yang berarti batu Magnesian. Magnesia adalah nama sebuah wilayah di Yunani pada masa lalu yang kini bernama Manisa (sekarang berada di wilayah Turki) di mana terkandung batu magnet yang ditemukan sejak zaman dulu di wilayah tersebut. Pada saat ini, suatu magnet adalah suatu materi yang mempunyai suatu medan magnet
Magnet selalu memiliki dua kutub yaitu: kutub utara (north/ N) dan kutub selatan (south/ S). Walaupun magnet itu dipotong-potong, potongan magnet kecil tersebut akan tetap memiliki dua kutub. Magnet dapat menarik benda lain. Beberapa benda bahkan tertarik lebih kuat dari yang lain, yaitu bahan logam. Namun tidak semua logam mempunyai daya tarik yang sama terhadap magnet. Besi dan baja adalah dua contoh materi yang mempunyai daya tarik yang tinggi oleh magnet. Sedangkan oksigen cair adalah contoh materi yang mempunyai daya tarik yang rendah oleh magnet. Satuan intensitas magnet menurut sistem metrik pada International System of Units (SI) adalah Tesla dan SI unit untuk total fluks magnetik adalah weber. 1 weber/m2 = 1 tesla, yang mempengaruhi satu meter persegi


Membuat Magnet
Sebuah kapur jika dibagi menjadi bagian-bagian yang sangat kecil. setiap bagian itu masih mempunyai sifat kapur. Demikian pula magnet, jika dibagi-bagi, setiap bagian magnet masih mempunyai dua jenis kutub magnet, yaitu kutub utara magnet (U) dan kutub selatan magnet (S). Berdasarkan kenyataan itu, dikembangkanlah teori magnet yang disebut teori magnet elementer.
Dalam teori ini dikatakan bahwa sifat magnet suatu benda (besi atau baja) ditimbulkan oleh magnet-magnet kecil dalam benda tersebut yang disebut magnet elementer. Suatu benda akan bersifat magnet jika magnet-magnet elementernya mempunyai arah yang cenderung sama dan tidak mempunyai sifat magnet jika magnet-magnet elementernya mempunyai arah acak (sembarang). Pada besi magnet, elementernya menunjuk arah yang sama. Antar magnet elementer tersebut terdapat gaya tolak-menolak dan gaya tarik-menarik. Akan tetapi, di bagian ujung magnet hanya terdapat gaya tolak-menolak. Itulah sebabnya pada ujung-ujung magnet terdapat gaya magnet paling kuat, sedangkan bagian tengahnya lemah.
Pada besi bukan magnet, magnet-magnet elementernya mempunyai arah acak atau sembarang Karena arahnya acak, gaya tarik-menarik dan tolak-menolak antarmagnet elementer saling meniadakan. Itulah sebabnya pada besi bukan magnet tidak terdapat gaya magnet (sifat magnet).
Benda-benda yang magnet elementernya mudah diatur arahnya dapat dibuat menjadi magnet. Namun, magnet ini kemagnetannya tidak awet. Magnet yang demikian disebut magnet lunak. Sebaliknya, ada benda yang sulit dijadikan magnet. Namun, setelah menjadi magnet. kemagnetannya awet. Magnet yang demikian disebut magnet keras. Magnet dapat dibuat dengan cara digosok, dialiri arus listrik, dan induksi.
 
-Membuat Magnet dengan Cara Digosok
Besi atau baja akan menjadi magnet jika arah menggosoknya teratur dalam satu arah, misalnya berlawanan arah dengan gerakan jarum jam. Setelah menjadi magnet, pada baja
terbentuk kutub-kutub magnet yang berlawanan dengan kutub magnet penggosoknya. Pada ujung terakhir bagian yang digosok menjadi kutub magnet yang berlawanan dengan kutub magnet yang disosokkan.
 
-Membuat Magnet dengan Cara Induksi
Pembuatan magnet secara induksi pada dasarnya memengaruhi bahan f'erromagnetik dengan suatu magnet. Untuk memahami hal itu, dapat dibayangkan ketika berada di dekat api unggun. Makin dekat api unggun, maka akan merasakan makin panas. Begitu pula bahan ferromagnetik. Makin dekat ke magnet, bahan itu akan mempunyai gaya magnet yang makin kuat.
Jika sebatang besi didekatkan (tidak sampai menyentuh) pada magnet yang kuat. batang besi tersebut akan menjadi magnet. Pembuatan magnet seperti ini disebut pembuatan magnet dengan cara induksi. Jika paku yang cukup besar didekatkan magnet yang cukup kuat, paku tersebut menjadi magnet. Hal ini terbukti paku dapat menarik jarum Kemagnetan paku disebut magnet induksi. Magnet induksi termasuk magnet sementara. Jika bahan magnet induksi terbuat dari bahan besi, sifat magnetnya langsung hilang begitu magnet utama dijauhkan. Akan tetapi, jika bahan magnet induksi terbuat dari baja, sifat kemagnetannya masih tetap ada (kecil) meskipun magnet utama telah dijauhkan.
 
-Membuat Magnet dengan Cara Dialiri Arus Listrik §
Untuk membuat magnet yang memanfaatkan arus listrik. Diperlukan sumber tegangan DC (baterai atau aki), kabel, dan batang besi atau baja. Jika sebatang baja atau besi dililit kawat yang dialiri arus listrik searah, baja atau besi tersebut akan menjadi magnet. Magnet yang dibuat dengan cara seperti itu disebut elektromagnet atau magnet listrik
Berkaitan dengan pola garis gaya magnet dapat dinyatakan sebasai berikut.
1. Garis-garis gaya magnet tidak pernah saling berpotongan.
2. Garis-garis gaya magnet didefinisikan keluar dari kutub utara magnet dan masuk ke kutub selatan magnet.
3. Medan magnet kuat ditunjukkan oleh raris-garis gaya rapat dan medan magnet lemah ditun.jukkan oleh garis-garis gara renggang
Kemagnetan Bumi
Jika magnet batang dapat bergerak bebas, magnet tersebut cenderung menunjukkan arah utara-selatan. Ujung magnet yang menunjuk ke arah utara disebut kutub utara magnet (U) dan ujung magnet yang menunjuk ke arah selatan disebut kutub selatan magnet (S). Hal itu menunjukkan bahwa ada medan magnet luar yang mempengaruhi jarum kompas. Medan magnet luar tersebut tidak lain adalah medan magnet yang berasal dari bumi. Dengan demikian, dapat disimpulkan bahwa bumi mempunyai sifat magnet dengan kutub utara bumi merupakan kutub selatan magnet dan kutub selatan bumi merupakan kutub utara magnet. Karena bentuk bumi bulat, sumbu bumi dapat kita anggap sebagai magnet batang yang besar. Sampai sekarang, tidak ada seorang pun yang tahu mengapa bumi bersifat magnet. Kenyataannya, arah yang ditunjuk oleh jarum kompas tidak tepat arah utara-selatan. Akan tetapi, jarum kompas tersebut agak menyimpang dari arah utara-selatan. Sudut yang dibentuk oleh kutub utara magnet jarum kompas dengan arah utara bumi disebut deklinasi.
Seiain membentuk sudut dengan arah utara-selatan bumi, jarum kompas juga membentuk sudut dengan garis horizontal. Artinya, jarum kompas tidak sejajar dengan bidang datar di bawahnya. Hal ini menunjukkan bahwa garis-garis gaya magnet bumi tidak sejajar dengan permukaan bumi. Sudut kemiringan yang dibentuk oleh jarum kompas terhadap garis horizontal disebut inklinasi. Besar inklinasi di setiap tempat tidak sama. 
Berdasarkan kemampuan menyimpan sifat magnetiknya, bahan magnetik dapat digolongkan menjadi :
-magnet permanen dan magnet sementara.
Magnet permanen merupakan magnet yang tetap mempertahankan kekuatannya untuk jangka waktu yang lama. Magnet permanen digunakan dalam berbagai alat pengukur, antara lain voltmeter, galvanometer, alat perekam kardiograf, kompas magnet, magnetometer. Magnet permanen juga digunakan dalam peralatan seperti pengeras suara (loudspeaker), pita kaset, dan disket.
Magnet terdiri atas beberapa jenis. Berdasarkan bentuknya, magnet dibedakan atas magnet batang, magnet silinder, magnet U, magnet ladam, dan magnet jarum. Magnet mempunyai dua buah kutub yang disebut kutub magnet. Kutub-kutub ini dinamakan kutub utara (berwarna merah) dan kutub selatan (berwarna hitam).




Medan Magnet
Medan magnet adalah daerah di sekitar magnet yang menyebabkan sebuah muatan yang bergerak di sekitarnya mengalami suatu gaya. Medan magnet tidak dapat dilihat, namun dapat dijelaskan dengan mengamati pengaruh magnet pada benda lain, misalnya pada serbuk besi.
-Garis-garis gaya magnetik selalu keluar dari kutub utara magnet dan masuk ke kutub selatan magnet.
-Garis-garis gaya magnetik tidak pernah saling berpotongan dengan garis-garis gaya magnetik lain yang berasal dari magnet yang sama.

https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEiuT-wywzIJv0f1gsQZp2deyrFS-Wjul8PfyzLTroSwoU_T-obXKssIp5poEnokFbj6M86k7M9hGCu0ZjfGCIuw-miwMaTagDBGMAeAXKhbcgPFwGHChyphenhyphenlAzHCTR55qxw8-iQ1Fn2alMYdT/s1600/medan_magnet.pnghttps://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEiuT-wywzIJv0f1gsQZp2deyrFS-Wjul8PfyzLTroSwoU_T-obXKssIp5poEnokFbj6M86k7M9hGCu0ZjfGCIuw-miwMaTagDBGMAeAXKhbcgPFwGHChyphenhyphenlAzHCTR55qxw8-iQ1Fn2alMYdT/s1600/medan_magnet.png










-Daerah yang garis-garis gaya magnetiknya rapat menunjukkan medan magnetik yang kuat, sedangkan daerah yang garis-garis gaya magnetiknya kurang rapat menunjukkan medan magnetik yang lemah.

Arah medan magnetik dari sebuah kawat yang dialiri arus listrik dapat ditentukan dengan menggunakan kaidah tangan kanan Oersted. Arah arus listrik ditunjukkan dengan ibu jari dan garis gaya magnetik ditunjukkan dengan keempat jari tangan. Medan magnetik yang dihasilkan oleh sebuah kawat penghantar sangatlah lemah, untuk menghasilkan medan magnetik yang cukup kuat dapat digunakan kumparan berarus listrik. Kumparan bersifat sebagai magnet yang kuat ini disebut sebagai elektromagnet. Elektromagnet memiliki sifat kemagnetan sementara. Jika arus listrik diputuskan, sifat kemagnetannya segera hilang.
-Kumparan berarus listrik dapat menghasilkan medan magnetik yang kuat karena setiap
-lilitan pada kumparan menghasilkan medan magnetik yang akan diperkuat oleh lilitan lainnya. Semakin banyak lilitan suatu kumparan, medan magnetik yang dihasilkannya semakin besar. Pola garis gaya magnetik yang dihasilkan oleh kumparan yang .dialiri arus listrik.
Untuk menentukan kutub magnet pada kumparan berarus listrik, digunakan aturan genggaman tangan kanan. Kutub utara ditunjukkan oleh arah ibu jari, arah arus pada kumparan sama dengan arah genggaman keempat jari
-Gaya Lorentz
Gaya Lorentz adalah gaya yang dialami sebuah penghantar yang dialiri arus listrik dalam
suatu medan magnetik yang sangat kuat. Arah gaya Lorentz (F) selalu tegak lurus terhadap kuat arus (I) dan medan magnetik (B). Arah arus listrik (I) ditunjukkan oleh ibu jari, arah medan magnetik (B) ditunjukkan oleh jari telunjuk, dan gaya lorentz ditunjukkan oleh jari tengah. Besar gaya lorentz bergantung pada besar medan magnetik, besar arus listrik yang mengalir, panjang kawat penghantar, dan sudut yang terbentuk antara arus listrik dan medan magnetik. Secara matematis gaya Lorentz didefinisikan dengan persamaan sebagai berikut.
F = B × I × l × sin θ ......... (7.1)
Keterangan:
F = gaya Lorentz (Newton)
B = medan magnetik (tesla)
I = kuat arus listrik (ampere)
l = panjang kawat penghantar (meter)
θ = sudut antara arah arus listrik dan arah medan magnetik


Pemanfaatan Sifat Kemagnetan
1. Prinsip Elektromagnet dalam Bel Listrik
¨  Bel listrik terdiri atas beberapa bagian, yaitu sebagai berikut.
-Besi berbentuk huruf U yang dililit kawat berfungsi sebagai magnet ketika diberi arus listrik.
-Interuptor yang berfungsi sebagai pemutus arus.
-Jangkar besi lunak yang dihubungkan dengan pegas baja.
-Besi yang berfungsi sebagai bel.
-Saklar tekan.
-Baterai sebagai sumber tegangan.
Ketika saklar ditekan, arus listrik dari baterai mengalir melalui interuptor lalu menuju pegas baja dan akhirnya sampai di kumparan. Ketika kumparan dialiri arus listrik, kumparan tersebut menjadi magnet (elektromagnet) dan menarik jangkar besi lunak sehingga jangkar tersebut memukul bel dan menghasilkan bunyi. Sesaat setelah jangkar besi lunak ditarik oleh elektromagnet, arus listrik yang mengalir melalui interuptor terputus. Terhentinya arus listrik yang mengalir menuju kumparan menyebabkan kumparan kehilangan sifat kemagnetannya sehingga pegas baja menarik jangkar besi lunak pada keadaan semula. Setelah kembali ke kedudukan semula, interuptor terhubung kembali dengan arus listrik dari baterai sehingga kumparan menjadi magnet dan proses yang sama akan terulang kembali. Proses ini terjadi secara berulang-ulang sehingga bel terus menghasilkan bunyi sampai saklar kembali ditekan untuk memutuskan arus dari baterai.
2. Prinsip Elektromagnet dalam Relai
Reladengan memanfaatkan arus listrik yang kecil. Relai merupakan saklar yang bekerja dengan menggunakan prinsip elektromagnet.

Ketika ada arus lemah yang mengalir melalui kumparan, inti besi lunak akan menjadi magnet. Setelah menjadi magnet, inti besi tersebut menarik jangkar besi lunak sehingga kontak saklar akan terhubung dan arus listrik kuat dapat mengalir. Kontak saklar akan terputus jika arus lemah yang masuk melalui kumparan diputuskan.

Pada relai terdapat dua buah rangkaian yang terpisah. Rangkaian pertama adalah rangkaian yang menghubungkan arus lemah dengan elektromagnet pada relai. Rangkaian kedua adalah rangkaian yang memanfaatkan kontak saklar pada i adalah alat elektronika yang dapat menghubungkan atau memutuskan arus listrik yang
besar relai untuk memutuskan atau menghubungkan arus listrik kuat yang terhubung dengan alat listrik lainnya, seperti motor listrik atau lampu

3. Prinsip Elektromagnet dalam Telepon
Telepon terdiri atas dua bagian utama, yaitu pesawat pengirim dan pesawat penerima. Telepon bekerja dengan cara mengubah gelombang suara menjadi getaran-getaran listrik. Ketika kita berbicara pada pesawat pengirim melalui mikrofon, tekanan suara kita menekan diafragma aluminium sehingga serbuk-serbuk karbon tertekan. Akibatnya, hambatan serbuk karbon berubah-ubah sesuai dengan tekanan suaramu.

Perubahan hambatan ini menyebabkan besarnya arus yang mengalir melalui rangkaian ikut berubah mengikuti perubahan tekanan suara. Perubahan besar arus yang mengalir tersebut diubah menjadi sinyal yang akan dikirimkan ke pesawat penerima. Pada pesawat penerima, sinyal listrik diubah kembali menjadi tekanan-tekanan suara. Akibatnya, diafragma besi yang ada dalam pesawat penerima terdorong dan menghasilkan tekanan suara yang sama dengan tekanan suara yang dikirimkan mikrofon

Arus Bolak Balik

ARUS BOLAK BALIK

Sebelumnya kita telah mempelajari mengenai listrik arus searah, yaitu arus dan tegangan listrik yang besarnya dapat dianggap tetap dan mengalir dalam satu arah. Arus searah yang juga disebut direct current (DC) contohnya dihasilkan oleh baterai. Pada modul ini akan dibahas mengenai arus bolak-balik atau alternating current (AC), yaitu arus dan tegangan listrik yang besarnya berubah terhadap waktu dan dapat mengalir dalam dua arah. Arus bolak-balik digunakan secara luas untuk penerangan maupun peralatan elektronik seperti televisi, radio, oven microwave, dan lain-lain. Di Indonesia, listrik arus bolak-balik disediakan oleh PLN. Pada modul ini, Anda juga akan mempelajari beberapa komponen-komponen listrik, diantaranya resistor, induktor, dan kapasitor, serta rangkaian yang menggunakan komponen-komponen listrik tersebut.

GENERATOR

Generator adalah mesin yang mengubah energi kinetik (mekanik) menjadi energi listrik. Prinsip kerja generator adalah menghasilkan arus listrik induksi dengan cara memutar kumparan dalam suatu medan magnetik.
Berdasarkan jenis ggl induksi atau arus listrik induksi yang dihasilkan maka generator dapat dibedakan atas generator arus bolak-balik (AC) dan generator arus searah (DC). Perbedaan generator arus searah dengan generator arus bolak-balik hanyalah pada cincin luncur (cincin kolektor) yang berhubungan dengan kedua ujung kumparan dimana generator AC memiliki dua buah cincin yang masing-masing berhubungan dengan tiap ujung kumparan sedangkan generator DC memiliki sebuah cincin yang terbelah di tengahnya yang disebut cincin belah atau komutator.

Generator AC sederhana terdiri dari sebuah kumparan yang diputar dalam suatu medan magnetik seperti gambar yang ditunjukkan gambar di atas. Untuk melihat bagaimana arus dibangkitkan oleh generator, perhatikan dua sisi vertikal dari kumparan pada gambar tersebut. Agar kumparan berputar berlawanan arah jarum jam maka sisi vertikal kiri harus mengalami gaya F ke depan dan sisi vertikal kanan harus mengalami gaya F ke belakang. Sesuai dengan kaidah telapak tangan untuk gaya magnetik (gaya Lorentz), arus I pada sisi vertikal kiri haruslah ke atas, dan arus I pada sisi vertikal kanan haruslah ke bawah, seperti ditunjukkan pada gambar tersebut. Arah gaya F pada gambar searah dengan arah normal bidang kumparan n. dengan demikian sudut antara arah induksi magnetik B dan arah normal bidang n adalah θ. Dalam generator, perputaran kumparan menyebabkan sudut θ selalu berubah, dan ini menyebabkan fluks magnetik (Ф), yang menerobos bidang kumparan juga berubah. Pada ujung-ujung kawat loop dibangkitkan ggl induksi (ε), yang dapat dihitung dengan persamaan:
ε=-NBA (d cosθ)/dt
Bila loop diputar dengan kecepatan sudut ω maka θ = ωt, dan persamaan di atas dapat ditulis sebagai:
ε=-NBA (d )/dt(cos⁡〖ωt)〗
ε=NBA ω sin⁡ωt
Jika ggl induksi maksimum antara ujung-ujung sikat sama dengan ε_m, maka persamaan di atas dapat ditulis sebagai:
ε=ε_m sin⁡〖ωt=〗 NBA ω sin⁡ωt
Dengan ggl maksimum, ε_m, diberikan oleh:
ε_m=NBAω
Dengan ε = ggl induksi sesaat, ε_m = ggl induksi maksimum, ω = kecepatan sudut putar dari loop dan t = lama loop telah berputar. Nyata bahwa ggl induksi yang dihasilkan pada loop berubah terhadap waktu setiap satu periode T=2π/ω.

ARUS DAN TEGANGAN BOLAK BALIK

Arus dan tegangan bolak-balik adalah arus dan tegangan yang nilainya selalu berubah terhadap waktu secara periodik. Besaran seperti ini disebut arus dan tegangan bolak-balik atau AC (Alternating Current). Apabila pada arus searah Anda dapat mengetahui nilai dan tegangannya yang selalu tetap. Maka, pada arus bolak-balik Anda akan dapat mengetahui nilai maksimum yang dihasilkan dan frekuensi osilasi yang dihasilkan oleh sumbernya. Arus dan tegangan listrik bolak-balik berbentuk sinusoida seperti yang ditunjukkan oleh Gambar 1.3 berikut.
Secara matematis, arus dan tegangan listrik bolak-balik tersebut dapat dinyatakan sebagai berikut:
V=V_{m}sin\omega .t=V_{m}sin2\pi .f.t=t=V_{m}sin2\pi \frac{t}{T}
I=I_{m}sin\omega .t=I_{m}sin2\pi .f.t=t=I_{m}sin2\pi \frac{t}{T}
Dimana:
V = tegangan sesaat (V)
I = arus sesaat (A)
Vm = tegangan maksimum (V)
Im = arus maksimum (A)
f = frekuensi (Hz)
T = periode (s)
t = waktu (s)
ωt = sudut fase (radian atau derajat)
Hubungan amplitudo tegangan atau arus bolak-balik dengan sudut fase dapat dinyatakan secara grafik dalam diagram fasor. Fasor adalah suatu vektor yang berputar berlawanan arah putaran jarum jam terhadap titik asal dengan kecepatan sudut ω. Fasor suatu besaran dilukiskan sebagai suatu vektor yang besar sudut putarnya terhadap sumbu horizontal (sumbu x) sama dengan sudut fasenya. Nilai maksimum besaran tersebut adalah sama dengan panjang fasor, sedangkan nilai sesaatnya adalah proyeksi fasor pada sumbu vertikal (sumbu y). Berikut adalah gambar diagram fasor untuk arus dan tegangan yang sudut fasenya sama (sefase) serta gambar fungsi waktu dari arus dan tegangan tersebut.
Sesungguhnya arus dan tegangan bolak-balik bukanlah besaran vektor, melainkan besaran skalar. Penggambaran arus dan tegangan bolak-balik sebagai fasor adalah untuk mempermudah analisis rangkaian arus bolak-balik yang lebih rumit.
NILAI RATA-RATA DAN NILAI EFEKTIF
Arus dan tegangan bolak-balik adalah arus dan tegangan yang nilainya selalu berubah terhadap waktu secara periodik. Besaran seperti ini disebut arus dan tegangan bolak-balik atau AC (Alternating Current). Apabila pada arus searah Anda dapat mengetahui nilai dan tegangannya yang selalu tetap. Maka, pada arus bolak-balik Anda akan dapat mengetahui nilai maksimum yang dihasilkan dan frekuensi osilasi yang dihasilkan oleh sumbernya. Arus dan tegangan listrik bolak-balik berbentuk sinusoida seperti yang ditunjukkan 
GEJALA TRANSIEN PADA KAPASITOR
Biasanya pengertian kapasitor adalah dua bahan logam yang berbentuk identik yang kedua luas permukaannya dapat berhadapan secara simetris mengikuti arah medan listrik, sehingga memiliki kemampuan untuk menyimpan muatan listrik. Namun kenyataanya konduktor tunggalpun memiliki kapasitansi yang merupakan ukuran daya tampung muatan. Artinya konduktor tunggal pun mampu menampung muatan listrik. Contoh benda berbentuk bola dapat diberi muatan karena bentuk simetri lainnya dianggap berada di tak hingga. Kapasitor yang tersedia di pasar dapat ditunjukkan dalam berbagai jenis dan ukuran seperti gambar di atas. Simbol untuk kapasitor digambarkan seperti gambar berikut.
Kapasitansi didefinisikan sebagai:
C=Q/∆V
Artinya, daya tampung muatan pada suatu kapasitor bergantung pada beda potensial diantara kedua keping yang berhadapan secara simetris. Nilai beda potensial ini bergantung pada bentuk fisik dan ukuran serta jarak antara kedua keping. Hampir semua komponen dalam rangkaian listrik memiliki kapasitansi, misal kabel, kawat maupun resistor. Satuan SI untuk menyatakan kapasitansi adalah F (farad), namun karena satuan ini terlalu besar untuk keperluan sehari hari digunakan mikrofarad (ditulis μF = 10–6F), nanofarad (ditulis nF = 10–9F) dan pikofarad (ditulis pF = 10–12F).
Gambar 1.10 menunjukkan hubungan antara bentuk fisik dan arah medan listrik pada kapasitor berbentuk keping

Arus Searah

A.  Pengertian Arus Listrik Dan Beda Potensial
Ada beberapa asas penting yang perlu di ingat dan di pahami kembali yaitu:

·      Terdapat dua jenis muatan listrik, yaitu muatan positif ( + ) dan muatan negative ( - )
·      Muatan positif ada pada inti atom, sedangkan muatan negative ada pada electron
·      Electron dapat berpindah dari satu atom ke atom lain, sedangkan inti tidak dapat pindah
·      Atom-atom penghantar (konduktor) memiliki electron-elektron bebas yang sangat mudah berpindah dari satu tempat ke tempat lain di dalam penghantar itu.
·      Muatan listrik dapat bergerak (mengalir) jika ada beberapa potensial (tegangan)
Dari beberapa asas tersebut, kita dapat menyimpulkan bahwa arus listrik ditimbulkan oleh muatan listrik yang berpindah atau muatan listrik yang bergerak. Bila dalam suatu penghantar terus menerus terjadi perpindahan muatan atau electron, maka berarti dalam penghantar itu terjadi arus listrik.

Agar terjadi arus listrik pada suatu penghantar maka ujung-ujung kawat penghantar itu harus di buat berbeda potensialnya, ujung yang satu potensialnya harus lebih tinggi daripada ujung yang lain. Beda potensial yang menyebabkan terjadinya arus listrik, sering di sebut dengantegangan lisrik.

1.    Kuat Arus Listrik
Kuat arus listrik didefinisikan sebagai jumlah muatan yang mengalir melalui penampang suatu kawat penghantat per satuan waktu. Jadi, bila sejumlah muatan q mengalir melalui penampang penghantar dalam waktu t, maka kuat arus i yang mengalir besarnya adalah:








2.    Hukum Ohm Dan Hambatan Listrik
Pada tahun 1827, seorang ahli fisika bangsa Jerman bernama George Simon Ohm ( 1789-1854 ) menemukan hubungan antara arus dan tegangan listrik. Kuat arus yang mengalir pada suatu kawat penghantar sebanding dengan tegangan yang menimbulkannya. Pernyataan ini disebut hukum ohm. Dalam bentuk persamaan , hukum ini di tulis :
Dalam persamaan tersebut, R dapat dianggap sebagai tetapan kesebandingan. Tetapan ini selanjutnya disebut hambatan listrik (resistor ).

Dari persamaan hukum ohm ini, dapat disimpulakn sebagai berikut :

Kuat arus yang mengalir dalam suatu kawat penghantar ( yang tidak mengalami perubahan suhu ) besaranya :
·  Sebanding dengan tegangan yang menimbulkannya
·  Berbanding terbalik dengan hambatan kawat penghantar
Hambatan Listrik
Besar hambatan listrik pada suatu penghantar di pengaruhi oleh jenis bahan dari penghantar tersebut. Besarnya hambatan listrik tersebut dapat di rumuskan :

Percoban-percobaan yang teliti mununjukan bahwa hambatan suatu penghantarbesarnya:
· Sebanding dengan panjang penghantar (L). artinya, semakin panjang kawat maka hambatannya semakin besar.
· Berbanding terbalik dengan dengan luas penampang penghantar (A). artinya, semakin luas penmapang penghantar maka hambatnnya semakin kecil
· Sebanding dengan hambatan jenis dari bahan kawat (ρ). Artinya. Jika bahan kawat penghantar memiliki hambatan jenis yang besar maka hambatan jenis yang besar maka hambatan penghantar dari bahan itu besar.

B.       Alat Ukur Listrik
Alat ukur yang biasa digunakan dalam dalam pengukuran besar-besaran lisrik yaitu, ampere meter, voltmeter, meter dasar, multitester dan osiloskop.
· Ampere meter digunakan untuk mengukur kuat arus listrik , sedangkan voltmeter digunakan untuk mengukur beda potensial atau tegangan listrik. Pada masa sekarang kedua alat tersebut sudah di rangkum dalam satu alat yang disebut dengan meter dasar (basic meter). Jadi, meter dasar dapat berfungsi sebagai ampere meter dan voltmeter.
· Multitester, yang sering disebut juga multimeter atau avo-meter adalah alat ukur yang berfungsi sekaligus sebagai ampere meter . voltmeter, ohmmeter (pengukur hambatan listrik). Di sampping itu, multimeter dapat digunakan dalam pengukuran arus listrik searah maupun arus listrik bolak-balik

C.  Sumber Arus Searah
Sumber arus searah adalah sumber energy listrik yang dapat menimbulkan arus listrik yang besar arahnya selalu tetap (konstan). Sumber arus searah ini dapat berasal dari hasil proses kimia atau dari proses lainnya. Sumber-sumber arus searah yang berasal dari proses kimia disebut elemen-elemen elektrokimia.
Elemen-Elemen Elektrokimia
Prinsip dasar dari suatu elemen elektrokimia ialah dua lempeng logam berbeda jenis dicelupkan ke dalam larutan elektrolit dan lempeng yang satu tidak bersentuhan dengan lempeng lainnya. Suatu reaksi kimia menyebabkan kedua logam melepaskan electron-elektron ke larutan. Salah satu lempeng melepaskan electron lebih banyak daripada lempeng lain, sehingga lempeng itu potensialnya menjadi lebih rendah dari pada lempeng lain tadi. Beda potensial antara kedua lempeng tersebut dapat menimbulkan arus listrik dalam suatu rangkaian.
Elemen elektrokimia dapat di golongkan menjadi dua golongan yaitu, elemen primer danelemen sekunder.

a.      Elemen primer
Pada elemen primer, reaksi kimianya tidak dapat di balikan, sehingga elemen jenis ini hanya dapat dipakai selama reaksi di dalamnya berlangsung. Jika reaksi kimia selesai, maka bahan kimia di dalamnya tidak dapat di kembalikan menjadi bahan kimia semula. Contoh sumber arus yang termasuk elemen primer yaitu, elemen volta, elemen leclance, elemen kering, elemin alkalin dan elemen raksa.
b.      Elemen sekunder
Dalam kehidupan sehari-hari, elemen sekunder ini dikenal dengan sebutan akumulator atauaki. Akumulator merupakan elemen elektrokimia bahan-bahan pereaksinya dapat diperbaharui kembali. Artinya, apabila bahan-bahan pereaksinya sudah tidak berfungsi lagi maka dapat diperbaharui kembali dengan cara mengalirkan arus listrik dari sumber luar yang arahnya berlawanan dengan arus yang dihasilkan akumulator.

2.      Generator Arus Searah
Selain diperoleh dari elemen-elemen elektrokimia, sumber arus searah dpaat juga didapat dari generator arus searah. Generator adalah alat yang dapat mengubah energy mekanik (gerak) menjadi energy listrik. Energy listrik pada generator timbul karena adanya peristiwa induksi.
Generator ada yang menghasilkan arus bolak-bali (AC) dan ada yang menghasilkan arus searah (DC). Perinsip kerja dari kedua jenis generator ini pada dasarnya sama. Perbedaannya terletak pada bentuk komutatornya. Generator AC memiliki dua cincin yang terpisah, sedangkan generator DC memiliki satu cincin yang terbelah dua